Exam 3 Review: Sections 3.5-3.7 and 7.1-7.5

Section 3.5 Find the general solution to the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=3 x^{2}-1 .
$$

Section 3.5 Find the general form of the particular solution for the differential equation

$$
y^{(4)}-5 y^{\prime \prime}+4 y=e^{x}-x e^{2 x}
$$

(Do not solve for the undetermined coefficients.)

Section 3.6 Consider an undamped mass-and-spring system with mass $m=1$, spring constant $k=100$ and forced oscillations given by the function $F(t)=225 \cos 5 t+300 \sin 5 t$. Assume further that $x(0)=375$ and $x^{\prime}(0)=0$. Find the solution function $x(t)$.

Sections 3.7 Consider an RLC circuit with $R=40$ ohms, $L=10$ henries, $C=0.02$ farads and $E(t)=50 \sin 2 t$ volts at time t. This information gives the differential equation

$$
10 I^{\prime \prime}+40 I^{\prime}+50 I=100 \cos 2 t
$$

for the current $I(t)$ (in amperes). Find the general complementary solution and the particular solution for this circuit.

Section 7.1 State the Laplace transform of the following functions.

1. $f(t)=1$
2. $g(t)=e^{-3 t}$
3. $h(t)=t^{11}$
4. $i(t)=\sin 4 t$
5. $j(t)=\cos 5 t$

Section 7.1 Find the inverse Laplace transform for the function $F(s)=\frac{3 s+1}{s^{2}+4}$.

Sections 7.3 Use Laplace transforms to solve the initial value problem

$$
x^{\prime \prime}+8 x^{\prime}+25 x=0 ; \quad x(0)=2, x^{\prime}(0)=3 .
$$

Section 7.2 Find the inverse Laplace transform for the function $F(s)=\frac{1}{s^{2}\left(s^{2}+1\right)}$.

Section 7.2 Find the inverse Laplace transform for the function $F(s)=\frac{5 s-4}{s^{3}-s^{2}-2 s}$.

Section 7.3 Find the Laplace transform for the function $f(t)=t^{4} e^{\pi t}$.

Section 7.4 Use the fact that $\mathcal{L}\{(f * g)(t)\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}$ to find

$$
\mathcal{L}^{-1}\left\{\frac{98}{(s-2)(s-3)}\right\}
$$

Section 7.4 Use Laplace transforms to find a non-trivial solution to the differential equation

$$
t x^{\prime \prime}+(3 t-1) x^{\prime}+3 x=0 ; \quad x(0)=0
$$

Section 7.5 Use the fact that $\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} F(s)$ to find

$$
\mathcal{L}\{f(t)\} \quad \text { where } f(t)= \begin{cases}\cos \pi t, & \text { if } 0 \leq t \leq 2 \\ 0, & \text { if } t>2\end{cases}
$$

Section 7.5 Consider the differential equation

$$
y^{(4)}+2 y^{\prime \prime}+y=4 t^{3} e^{t} ; \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{(3)}(0)=0 .
$$

(a) Solve for the transform $Y(s)=\mathcal{L}\{y(t)\}$. (Hint: You may need the formula $\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} F^{(n)}(s)$ or any other method.)
(b) Find the general form of the partial fraction decomposition of $Y(s)$. You do not need to solve for the coefficients.

